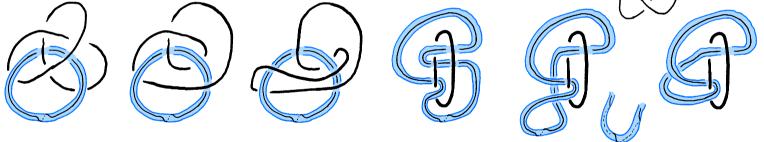
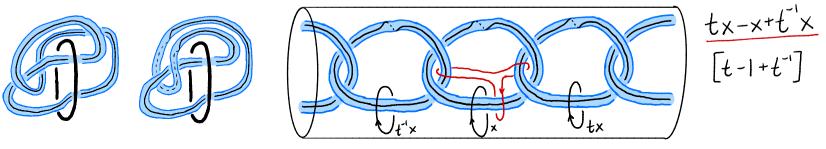


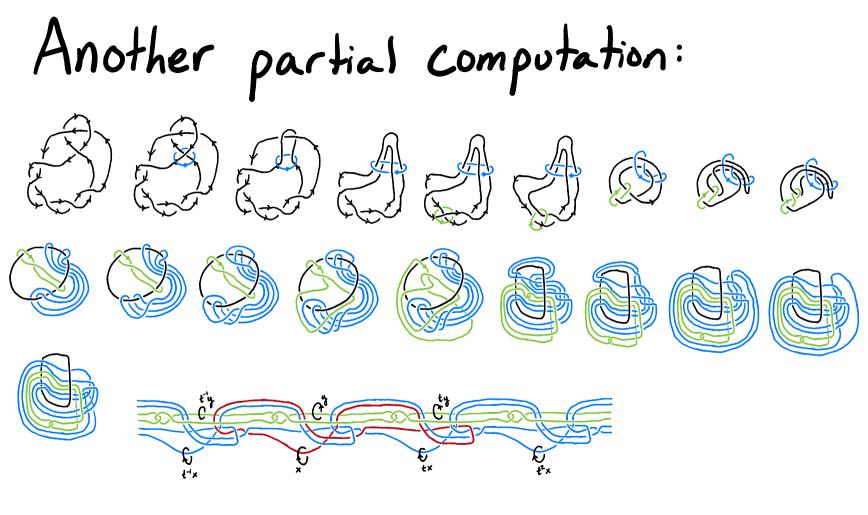
What is the Alexander Polynomial?

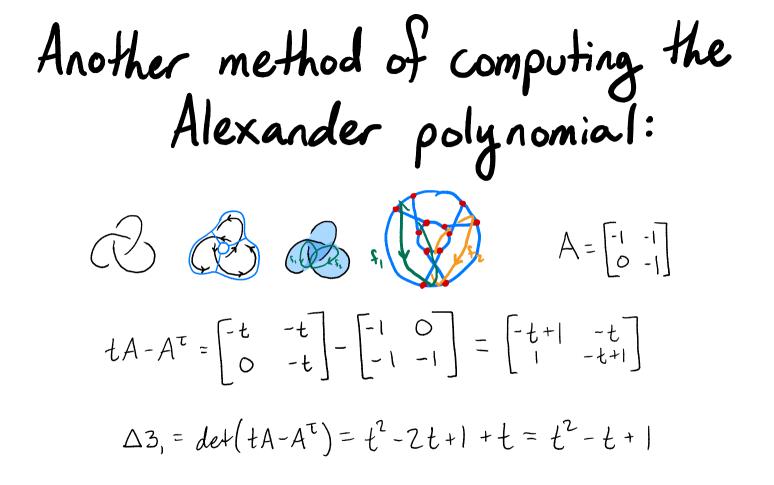
Def (Alexander, 1923) Given a knot K, the Alexander polynomial Dr(6) is the determinant of a presentation matrix (Alexander matrix) for H, (Xoo) as a module over Z[t,t'] where Xoo is the infinite cyclic cover of the complement of K in S³ and t is a covering transformation "moving along the cyclic cover" (?) This is unique up to multiplication by a unit in $\mathbb{Z}[t,t^{-1}]$ $(\pm t^n)$

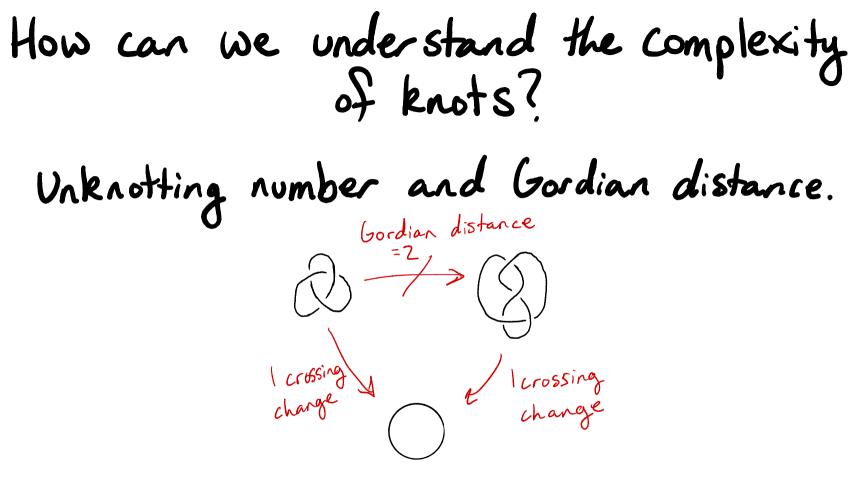




Another example computation: t-1x-3x+tx $\langle \hat{\boldsymbol{\gamma}} \rangle$

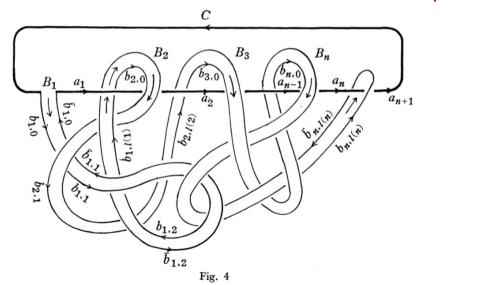






How do these ideas interact?

 $\frac{\text{Thm (Kondo, 1978): For any Alexander polynomial p(t), there exists a knot K with unknothing number (such that <math>\Delta_{k}(t) = p(t)$. $p(t) = p(t') \neq p(1) = \pm 1$



<u>Question</u>: Does there exist a nontrivial Alexander polynomial a(t) such that for any Alexander polynomial b(t), there exist a pair of knots K_a and K_b with Gordian distance | such that $\Delta_{K_b}(t) = b(t)$?

<u>Answer</u> (Kawauchi, 2011): Yes! This is the case for any Alexander polynomial a(t) of slice type (meaning $a(t) = c(t)c(t^{-1})$ for some Laurent polynomial c(t))

$$\frac{\text{Jong's Problem}}{\text{Jong's Problem}}: \text{ Does there exist a pair of Alexander polynomials } a(t) $ b(t) such that any two knots Ka$Ko
where $\Delta_{K_a}(t) = a(t)$ and $\Delta_{K_b}(t) = b(t)$ have Gordian distance at least 2?
Answer (Kawauchi, 2011): Yes! For example:
 $a(t) = t - 1 + t^{-1}$ — Alexander polynomial of trefoil
 $b(t) = -t + 3 - t^{-1}$ — Alexander polynomial of figure 8 knot$$

Question: Does there exist a nontrivial knot K such that for any Alexander polynomial a(t), there exists some knot Ka such that $\Delta_{k_a}(t) = a(t)$ and the Gordian distance between K and Ka is 1?

Answer: Open

Buti I think we can eliminate knots with monic Alexander polynomial from the running using a procedure for characterizing the Alexander polynomials of knots with Gordian distance one by Nakanishi and Okada (2011).

<u>Notation</u>: For any knot K, let K^{\times} be the knots Gordian distance I from K and let ΔK^{\times} be the set of Alexander polynomials for knots in K^{\times} . Let ΔK be the set of all Alexander polynomials

Thm (Nakanishi and Okada, 2011):

$$\Delta 10_{132}^{\times} \cap \Delta 5_{1}^{\times} \neq \emptyset$$

 $\Delta 10_{132}^{\times} \cap \Delta 5_{1}^{\times} \neq \emptyset$
 $\Delta 5_{1}^{\times} \setminus \Delta 5_{1}^{\times} \neq \emptyset$
 $\Delta 5_{1}^{\times} \setminus \Delta 10_{132}^{\times} \neq \emptyset$
 $\Delta K \setminus (\Delta 5_{1}^{\times} \cup \Delta 10_{132}^{\times}) \neq \emptyset$

